229 research outputs found

    The neuropeptide systems and their potential role in the treatment of mammalian retinal ischemia: a developing story

    Get PDF
    The multiplicity of peptidergic receptors and of the transduction pathways they activate offers the possibility of important advances in the development of specific drugs for clinical treatment of central nervous system disorders. Among them, retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Ischemia is a primary cause of neuronal death, and it can be considered as a sort of final common pathway in retinal diseases leading to irreversible morphological damage and vision loss. Neuropeptides and their receptors are widely expressed in mammalian retinas, where they exert multifaceted functions both during development and in the mature animal. In particular, in recent years somatostatin and pituitary adenylate cyclase activating peptide have been reported to be highly protective against retinal cell death caused by ischemia, while data on opioid peptides, angiotensin II, and other peptides have also been published. This review provides a rationale for harnessing the peptidergic receptors as a potential target against retinal neuronal damages which occur during ischemic retinopathies

    Recent advances in cellular and molecular aspects of mammalian retinal ischemia

    Get PDF
    Retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Generally, ischemic syndromes are initially characterized by low homeostatic responses which, with time, induce injury to the tissue due to cell loss by apoptosis. In this respect, retinal ischemia is a primary cause of neuronal death. It can be considered as a sort of final common pathway in retinal diseases and results in irreversible morphological and functional changes. This review summarizes the recent knowledge on the effects of ischemia in retinal tissue and points out experimental strategies/models performed to gain better comprehension of retinal ischemia diseases. In particular, the nature of the mechanisms leading to neuronal damage (i.e., excess of glutamate release, oxidative stress and inflammation) will be outlined as well as the potential and most intriguing retinoprotective approaches and the possible therapeutic use of naturally occurring molecules such as neuropeptides. There is a general agreement that a better understanding of the fundamental pathophysiology of retinal ischemia will lead to better management and improved clinical outcome. In this respect, to contrast this pathological state, specific pharmacological strategies need to be developed aimed at the many putative cascades generated during ischemia

    Natural function and structural modification of climacostol, a ciliate secondary metabolite

    Get PDF
    The review highlights the main results of two decades of research on climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol), the resorcinolic lipid produced and used by the ciliated protozoan Climacostomum virens for chemical defense against a wide range of predators, and to assist its carnivorous feeding. After the first studies on the physiological function of climacostol, the compound and some analogues were chemically synthesized, thus allowing us to explore both its effect on different prokaryotic and eukaryotic biological systems, and the role of its relevant structural traits. In particular, the results obtained in the last 10 years indicate climacostol is an effective antimicrobial and anticancer agent, bringing new clues to the attempt to design and synthesize additional novel analogues that can increase or optimize its pharmacological properties

    Autophagy-mediated neuroprotection induced by octreotide in an ex vivo model of early diabetic retinopathy

    Get PDF
    Neuronal injury plays a major role in diabetic retinopathy (DR). Our hypothesis was that the balance between neuronal death and survival may depend on a similar equilibrium between apoptosis and autophagy and that a neuroprotectant may act by influencing this equilibrium. Ex vivo mouse retinal explants were treated with high glucose (HG) for 10days and the somatostatin analog octreotide (OCT) was used as a neuroprotectant. Chloroquine (CQ) was used as an autophagy inhibitor. Apoptotic and autophagic markers were evaluated using western blot and immunohistochemistry. HG-treated explants displayed a significant increase of apoptosis paralleled by a significant decrease of the autophagic flux, which was likely to be due to increased activity of the autophagy regulator mTOR (mammalian target of rapamycin). Treatment with OCT rescued HG-treated retinal explants from apoptosis and determined an increase of autophagic activity with concomitant mTOR inhibition. Blocking the autophagic flux with CQ completely abolished the anti-apoptotic effect of OCT. Immunohistochemical observations showed that OCT-induced autophagy is localized to populations of bipolar and amacrine cells and to ganglion cells. These observations revealed the antithetic role of apoptosis and autophagy, highlighting their equilibrium from which neuronal survival is likely to depend. These data suggest the crucial role covered by autophagy, which could be considered as a molecular target for DR neuroprotective treatment strategies

    Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy

    Get PDF
    Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer

    Acid Sphingomyelinase Downregulation Enhances Mitochondrial Fusion and Promotes Oxidative Metabolism in a Mouse Model of Melanoma

    Get PDF
    Melanoma is the most severe type of skin cancer. Its unique and heterogeneous metabolism, relying on both glycolysis and oxidative phosphorylation, allows it to adapt to disparate conditions. Mitochondrial function is strictly interconnected with mitochondrial dynamics and both are fundamental in tumour progression and metastasis. The malignant phenotype of melanoma is also regulated by the expression levels of the enzyme acid sphingomyelinase (A-SMase). By modulating at transcriptional level A-SMase in the melanoma cell line B16-F1 cells, we assessed the effect of enzyme downregulation on mitochondrial dynamics and function. Our results demonstrate that A-SMase influences mitochondrial morphology by affecting the expression of mitofusin 1 and OPA1. The enhanced expression of the two mitochondrial fusion proteins, observed when A-SMase is expressed at low levels, correlates with the increase of mitochondrial function via the stimulation of the genes PGC-1alpha and TFAM, two genes that preside over mitochondrial biogenesis. Thus, the reduction of A-SMase expression, observed in malignant melanomas, may determine their metastatic behaviour through the stimulation of mitochondrial fusion, activity and biogenesis, conferring a metabolic advantage to melanoma cells

    Drp1 overexpression induces desmin disassembling and drives kinesin-1 activation promoting mitochondrial trafficking in skeletal muscle

    Get PDF
    Mitochondria change distribution across cells following a variety of pathophysiological stimuli. The mechanisms presiding over this redistribution are yet undefined. In a murine model overexpressing Drp1 specifically in skeletal muscle, we find marked mitochondria repositioning in muscle fibres and we demonstrate that Drp1 is involved in this process. Drp1 binds KLC1 and enhances microtubule-dependent transport of mitochondria. Drp1-KLC1 coupling triggers the displacement of KIF5B from kinesin-1 complex increasing its binding to microtubule tracks and mitochondrial transport. High levels of Drp1 exacerbate this mechanism leading to the repositioning of mitochondria closer to nuclei. The reduction of Drp1 levels decreases kinesin-1 activation and induces the partial recovery of mitochondrial distribution. Drp1 overexpression is also associated with higher cyclin-dependent kinase-1 (Cdk-1) activation that promotes the persistent phosphorylation of desmin at Ser-31 and its disassembling. Fission inhibition has a positive effect on desmin Ser-31 phosphorylation, regardless of Cdk-1 activation, suggesting that induction of both fission and Cdk-1 are required for desmin collapse. This altered desmin architecture impairs mechanotransduction and compromises mitochondrial network stability priming mitochondria transport through microtubule-dependent trafficking with a mechanism that involves the Drp1-dependent regulation of kinesin-1 complex

    XIAP as a Target of New Small Organic Natural Molecules Inducing Human Cancer Cell Death

    Get PDF
    X-linked inhibitor of apoptosis protein (XIAP) is an emerging crucial therapeutic target in cancer. We report on the discovery and characterisation of small organic molecules from Piper genus plants exhibiting XIAP antagonism, namely erioquinol, a quinol substituted in the 4-position with an alkenyl group and the alkenylphenols eriopodols A-C. Another isolated compound was originally identified as gibbilimbol B. Erioquinol was the most potent inhibitor of human cancer cell viability when compared with gibbilimbol B and eriopodol A was listed as intermediate. Gibbilimbol B and eriopodol A induced apoptosis through mitochondrial permeabilisation and caspase activation while erioquinol acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species. In silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-baculoviral IAP repeat domain. This demonstrates a novel aspect of XIAP as a key determinant of tumour control, at the molecular crossroad of caspase-dependent/independent cell death pathway and indicates molecular aspects to develop tumour-effective XIAP antagonists

    The natural compound climacostol as a prodrug strategy based on pH activation for efficient delivery of cytotoxic small agents

    Get PDF
    We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMO molecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pH-dependence of MOMO effects. In this respect, MOM-protection emerges as a potential prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds
    • …
    corecore